代表性论文 |
(一)第一作者论文 1. Chen, Y., Li, W., You, Y., Ye, C., Shu, X., Zhang, Q., Zhang, K.. Soil properties and substrate quality determine the priming of soil organic carbon during veget ation succession, Plant and Soil, 2022, 471: 559-575 2. Chen, Y., Yin, S., Shao, Y., Zhang, Q., Zhang, K.. Greenhouse gas flux es from riparian forest soil depend on the responses of microbes to nitrogen and phosphorus addit ions, Applied Soil Ecology, 2022, 173: 104365 3. Chen, Y., Ma, S., Jiang, H., Yangzom, D., Cheng, G., Lu, X..Decomposition time, chemical traits and climatic factors determine litter-mixing effects on decomposition in an alpine steppe ecosystem in Northern Tibet. Plant and Soil, 2021: 23–35. 4. Chen, Y., Ma, S., Jiang, H., Hu, Y., Lu, X..Influences of litter diversity and soil moisture on soil microbial communities in decomposing mixed litter of alpine steppe species. Geoderma, 2020, 377: 114577. 5. Chen, Y., Wieder, W.R., Hermes, A.L., Hinckley, E.L.S.. The role of physical properties in controlling soil nitrogen cycling across a tundra-forest ecotone of the Colorado Rocky Mountains,U.S.A. Catena, 2020, 186: 104369. 6. Chen, Y., Ma, S., Liu, J., Cheng, G., Lu, X..Soil C and N dynamics and their non-additive responses to litter mixture under different moisture conditions from an alpine steppe soil, Northern Tibet. Soil Biology and Biochemistry, 2018, 125: 231–238. 7. Chen, Y., Ma, S., Sun, J., Wang, X., Cheng, G., Lu, X.. Chemical diversity and incubation time affect non-additive responses of soil carbon and nitrogen cycling to litter mixtures from an alpine steppe soil. Soil Biology and Biochemistry, 2017 109: 124–134. (二)参与发表的论文 1. Hu, Y., Jiang, H., Wang, F., Xu, Z., Chen, Y., Ma, S., Yan, Y., Lu, X. Opposite responses of global warming potential to ammonium and nitrate addition in an alpine steppe soil from Northern Tibet. Global Ecology and Conservation, 2020, e01115. 2. Sun, J., Zhou, T., Liu, M., Chen, Y., Liu, G., Xu, M., Shi, P., Peng, F., Tsunekawa, A., Liu, Y.. Water and heat availability are drivers of the aboveground plant carbon accumulation rate in alpine grasslands on the Tibetan Plateau. Global Ecology and Biogeography, 2020, 29: 50–64. 3. Sun, J., Liu, M., Fu, B., Kemp, D., Zhao, W., Liu, G., Han, G., Wilkes, A., Lu, X., Chen, Y., Cheng, G., Zhou, T., Hou, G., Zhan, T., Peng, F., Shang, H., Xu, M., Shi, P., He, Y., Li, M., Wang, J., Tsunekawa, A., Zhou, H., Liu, Y., Li, Y., Liu, S.. Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau.Science Bulletin, 2020, 65: 1405–1414. 4. Ma, S., Chen, Y., Lu, X., Wang, X..Soil Organic Matter Chemistry: Based on Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC/MS). Mini-Reviews in Organic Chemistry, 2018, 15: 389–403. 5. Lu, X., Ma, S., Chen, Y., Yangzom, D., Jiang, H..Squalene found in alpine grassland soils under a harsh environment in the Tibetan plateau, China. Biomolecules, 2018, 8: 154. 6. Sun, J., Zhou, T., Liu, M., Chen, Y., Shang, H., Zhu, L., Shedayi, A.A., Yu, H., Cheng, G., Liu, G.. Linkages of the dynamics of glaciers and lakes with the climate elements over the Tibetan Plateau. Earth-Science Reviews, 2018, 185: 308–324. |